
The UnBlock algorithm

John P. Costella

Mornington, Melbourne, Australia
jpcostella@hotmail.com; assassinationscience.com/johncostella

(January 16, 2006)

Abstract

This paper describes the philosophical and mathematical formalism underlying the
UnBlock algorithm for removing block artifacts from JPEG and MPEG images.

1. Introduction and motivation

Since the development of the JPEG and MPEG standards, many researchers have sought
to remove the “blocking” artifacts that the compression method introduces. Many solutions
are mathematically complicated, and hence computationally slow. Many solutions require
that an end-user “fine-tune” parameters based on visual observation of the effects. Many
solutions degrade the fidelity of sharp edges in the original image.

The author’s goal was to create a deblocking method that requires no user input, executes
as fast as possible, and does not degrade features of the original image.

The result is the UnBlock algorithm. It takes any image that may have been subjected
to this form of blocking artifact, and automatically corrects it as far as possible. UnBlock
is completely a postprocessing step: it takes images that have been previously encoded and
decoded by the JPEG or MPEG algorithm, and corrects them. UnBlock does not require
the encoded JPEG or MPEG source file at all. UnBlock does not require any user input:
the algorithm determines which edge transitions are (most likely to be) blocking artifacts by
analyzing the image itself. There are no “tunable parameters”.

At the time of writing, it is not known whether any of the other existing algorithms fulfil
the abovementioned design criteria better than the UnBlock algorithm.

2. The problem and its solution

2.1. The nature of the problem

JPEG and MPEG images are broken down into 8× 8 blocks, and each such block is then
encoded in terms of its Fourier (Discrete Cosine Transform) components. (For color images,
the two chrominance components are typically downsampled by a factor of two in each
direction before being compressed, so that in the final image the chrominance components
are made up of 2× 2 pixel squares in 16× 16 pixel blocks.) Different compression ratios
are obtained by dedicating varying numbers of bits to this information. However, at most

1



compression ratios, the edges of the 8× 8 blocks themselves becomes visible, to a greater
or lesser extent, and this degrades the fidelity of the perceived image, because the human
visual system is very sensitive to edges.

2.2. A naive approach

Deblocking algorithms are generally based on the observation that block artifacts are
most noticeable when the true image is varying relatively slowly and smoothly over the size
of a block. In such cases, each color component varies smoothly towards the boundaries, but
there are frequently large discontinuities across the boundaries.

The most naive approach is to simply measure the discontinuity in each component’s
value across the boundary, and, based on some criteria (either user-supplied or derived from
the image itself), smooth out some or all of the discontinuity in some way.

However, if the true intensity gradient across that boundary (on the uncompressed image)
is nonzero, this naive method will, in general, end up removing changes in intensity that
should remain. This can lead to the introduction of new boundary artifacts that would be as
bad or worse than the block discontinuities we are removing from other parts of the image:
a lack of gradient across two pixels in the middle of a region that otherwise has a smooth
gradient is just as bad, visually, as doubling the gradient across those two pixels by means
of a discontinuity.

Clearly, if all we measure are boundary discontinuities, it will in general be impossible to
correct a discontinuity of a given size ε in any image without erroneously “overcorrecting”
regions of smooth gradient of up to ε per pixel. This is particularly problematical for
relatively high quality images, for which the boundary discontinuities to be corrected are, on
average, relatively small, and hence typically comparable to linear gradients over substantial
regions of the image.

2.3. A linear model approach

A better approach than the naive measurement of only intensity discontinuities would be
to assume a linear variation of intensity on each side of a boundary. We would need at least
two pixels on each side of the boundary in order to estimate the derivative on each side. If
we extrapolate to the position half-way between the two boundary pixels, from both sides,
we can then compare the two extrapolations; the difference between them would then be the
“discrepancy” that may need to be removed.

Such a method would automatically correct for the “tilt” of a region of smooth gradient;
in other words, if the smooth gradient is continued across the boundary, the discrepancy
is zero; in contrast, a lack of continuation of the smooth gradient (i.e., if the pixels on
either side of the boundary had exactly the same intensity) would, rather, be detected as an
unexpected discrepancy in the negative direction.

2.4. How much discrepancy should be removed?

At this stage we need to remember that even a linear model in each block is only an
approximation. It may be a bad approximation if there are strong high-frequency compo-

2



nents (rapid changes in intensity) around the boundary. Before removing any purported
discrepancy, we should first determine whether it is larger than what we would expect.

But what should we expect? We don’t have the original image, so we can’t be sure
that there isn’t a sharp discontinuity in the original image that happens to lie right on the
boundary. If we removed all discrepancies unconditionally, we would automatically blur out
any such sharp edge that happens to unfortunately fall in the wrong place.

It is impossible to avoid such an error in every possible case, but we can do so statistically.
For any given image, the distribution of the magnitudes of the block boundary discontinuity
errors will be determined by the amount of compression employed (the “quality factor”). By
computing the distribution of boundary discrepancies across the entire image, and comparing
it to the distribtuion of “discrepancies” calculated in the interior of the blocks, we can
quantify, statistically, the amount to which the compression has introduced block artifacts.

Now, what are we to do with these statistical distributions? A reasonable ansatz is that
we should reduce each boundary discrepancy by an amount that will make the interior and
boundary discrepancy distributions the same, as far as possible.

The method for doing this in practical terms will be discussed further below.

2.5. A parabolic model

In the above we noted that a linear model would be preferable to simply comparing
intensities on either side of a boundary, because it would avoid the problem of removing
a linear gradient across the boundary present in the original image. However, for very
little effort we can do even better than a linear model. A parabolic model would allow us
to extrapolate to the boundary more accurately, and would also allow us to extrapolate
blocking discontinuity artifacts in the gradient of the intensity, which the human eye is also
sensitive to. To estimate the second derivative, we would need at least three pixels on either
side of the boundary.

Now, how far could we extend this approach? How high a degree of polynomial should
we use?

In answering this question we must distinguish between two distinct tasks: that of mea-
suring the boundary discrepancies and that of correcting for these discrepancies.

2.6. The measurement of discrepancies

In terms of the measurement of discrepancies, there is a general rule of thumb in practical
uses of mathematics that guides us: a constant approximation to a general function is
generally poor; a linear approximation is much better, but still not optimal; a parabolic
approximation is even better, allowing a representation of curvature; a cubic can sometimes
be better, but in general will become too unstable, and magnifies errors if we wish to perform
extrapolations.

In our case, we will only need to extrapolate by half a pixel spacing, so it is not a priori
clear whether we would do better with a cubic approximation than with a parabolic.

To answer this question definitively, it is necessary to do some research with actual
JPEG images. The analyses performed in Sec. 3 below were originally carried out with
linear, parabolic, and cubic models. Experimentally, it is found that a parabolic model

3



gives the greatest discrimination between boundary and internal discrepancies; the linear
and cubic models both provide discrimination that is significantly inferior to the parabolic
model. These results hold across the full range of JPEG quality factors, and for both intensity
discrepancies and derivative discrepancies.

Thus, we should use a parabolic model in our measurement of discrepancies.

2.7. The correction of discrepancies

Correcting for the measured discrepancies (after we have “discounted” them appropri-
ately, as described in Sec. 2.4) is a completely different situation to that of measurement.
We would like to correct any computed intensity discrepancy and any computed intensity
gradient discrepancy at a given block boundary. Clearly, since the blocking phenomenon is
objectionable precisely because of its discontinuous nature, our objective will be to “spread”
the discrepancies out away from the boundaries as far as possible.

However, we also want the UnBlock algorithm to be as fast as possible. It would simplify
matters greatly if the image could be corrected “in place”, with each boundary being cor-
rected individually, walking along each row and correcting the vertical boundaries, and then
walking down each column and correcting the horizontal boundaries. If the correction of one
boundary were to affect neighboring blocks in such a way that the computation of discrepan-
cies for subsequent boundaries would be altered, then we would have an intertwining of the
measurement and correction phases of the algorithm that would necessitate a complicated
solution, almost inevitably requiring the global correction of an entire row or column in one
step, rather than a local correction of each boundary one at a time. We wish to avoid such
a complicated solution at all costs.

Thus, our aim is to construct a method of correction that spreads out discrepancies
away from the boundary as much as possible, but which does not alter the computation of
discrepancies for subsequent boundaries in any way.

This might seem to imply that we should only alter the four pixels either side of a
boundary in order to remove discrepancies at that boundary, so that the entire image is
“sliced” into strips eight pixels wide, with the original block boundaries running down the
centers of the strips. Each boundary would then effectively “own” its strip of eight pixels,
so that the correction of one boundary would not affect the pixels belonging to the strip of
another boundary.

However, such a strip ownership model brings with it a large performance penalty: it
leaves residual blocking artifacts in the form of intensity variations that oscillate up and
down with the original blocking period, i.e., with a period of eight pixels, sometimes called
the “washboard effect”. The reason for this is somewhat subtle. The strip model effectively
makes the ansatz that the original block intensities are accurate in the centers of each block,
and only build up inaccuracies as we move away from the center of each block towards the
boundaries. This “Taylor expansion around each block center” view is not correct, because
JPEG and MPEG compression works in terms of Fourier coefficients, not Taylor series, so,
if anything, we should assume that the average intensity across the block is accurate, not
the value at the center.

How, then, are we to avoid the washboard artifact, without creating an algorithm that
is intractably complicated?

4



With some clever footwork we can avoid the washboard problem. The strip design model
was based on our wish to remove the possibility of any interaction between the correction
of one boundary and the computation of discrepancies for the next. The strip model fulfils
this criterion, but it is more restrictive than is necessary. It only allows a given discrepancy
at a boundary to be spread out half a block either side of the boundary. Why not spread it
out a full block either side of the boundary? For sure, this will mean that we will be altering
pixels that are near the two adjacent boundaries, and hence we will be altering the values
used in the discrepancy calculations for those two adjacent boundaries. But does this mean
that the actually computed discrepancies will inevitably be altered as a consequence?

No it does not. All we need to do is ensure the satisfaction of three criteria: the increase
to the intensity function must vanish at the adjacent block boundaries; its spatial derivative
must vanish at the adjacent block boundaries; and our measurement model must be able
to model the correction function sufficiently faithfully that it will correctly determine that
the intensity value and its first derivative are vanishing. If these three criteria are satisfied,
then the intensity values of the pixels near the adjacent boundaries will be changed, but the
discrepancy values calculated at those boundaries will be the same as those that would have
been computed if the pixels’ values hadn’t been changed at all.

This concludes the general description of the UnBlock algorithm’s design criteria. In the
next section these criteria are given an explicit mathematical form.

3. Mathematical formulation

3.1. Notation and conventions

For definiteness of language, the following is written in terms of a vertical JPEG or MPEG
block boundary. (The same algorithm is used to filter across horizontal block boundaries.)
Hereinafter, the vertical JPEG or MPEG block boundaries will be simply referred to as
“boundaries”.

We will consider just one component channel of the image at a time. Because JPEG and
MPEG compression compresses the luminance (Y ) channel differently to the chrominance
(Cb and Cr) channels, we first transform color images to (Y, Cb, Cr) space before performing
the UnBlock algorithm.

After this transformation is performed, we perform the UnBlock algorithm on just one
channel (Y , Cb, or Cr) at a time. For the chrominance channels of a color image, we perform
the UnBlock algorithm on the downsampled image, and smooth it out suitably when we
upsample it to the original pixel resolution; the channels Y , Cb, and Cr are recombined into
red, green, and blue components at the end of the process.

We will refer to the intensity of the given channel being UnBlocked as I. In general, I
will be bounded to the range 0 ≤ I ≤ 255, although this constraint will not play an explicit
role in most of the following; any practical implementation of the UnBlock algorithm simply
has to ensure that any computed intensity values that fall outside this range are clipped to
0 or 255 as appropriate.

We measure along the row of pixels with a continuous x axis. For the luminance channel,
the scale of x is set so that one pixel spacing is one unit of x; for the chrominance channels,
we work in terms of downsampled pixels, so that one unit of x actually corresponds to two

5



pixels of the original image. (Hereinafter, “pixel” refers to downsampled pixels, except where
noted.) In each case there are eight units of x between block boundaries.

We set x = 0 to be at the “boundary” of interest between two blocks, which is defined to
be the position that is on the boundary of the two pixels surrounding the boundary. We refer
to this as the “central boundary”. The next boundary to the left of the central boundary,
which is referred to as the “left adjacent boundary”, is then located at x = −8; and the next
boundary to the right of the central boundary, which is referred to as the “right adjacent
boundary”, is located at x = +8. (For the purposes of the following, we assume that these
two adjacent boundaries exist; no substantial complications arise for the cases of the central
boundary being the leftmost or rightmost in the image.)

We assume that a pixel’s intensity represents its value at the center of the pixel, and
that the pixel is located “at” that central location. Thus, the pixel on the left of the central
boundary is at position x = −0.5, and the pixel on the right of the central boundary is at
position x = +0.5.

According to the considerations of the previous section, we concentrate our attention
on the sixteen pixels straddling the boundary, namely, the eight pixels between the left
adjacent boundary and the central boundary, together with the eight pixels between the
central boundary and the right adjacent boundary. For simplicity, the intensity values of
these sixteen pixels are given the symbol in, where n runs from 1 to 16, so that

in = I(n−8.5).

For example, the intensity of the pixel on the left of the central boundary i8, which is also
I(−0.5). The dual notation is convenient, because the UnBlock algorithm will ultimately deal
only with the integral values in; the continuous function I(x) is a mathematical construction
that guides the formulation of the algorithm, but then drops away from view.

3.2. The measurement model

For the task of measuring the discrepancies at the central boundary, the discussion of
Sec. 2.6 dictates that we fit a quadratic model to the three pixels on each side of the boundary.
It will prove to be simplest to represent this by performing a Taylor series expansion in I(x)
around x = 0, and retaining terms up to second order:

I(x) ≈ I(0) + I ′(0)x +
1

2
I ′′(0)x2. (1)

If there were no discrepancies across the boundary, and if the true image intensity is able
to be described sufficiently accurately by a parabolic function, then the quadratic model (1)
would hold across the complete domain being measured, namely, −2.5 ≤ x ≤ 2.5. In the
following, we use equality signs with the understanding that it is subject to this level of
approximation.

We now fit the model (1) to the left and right sides of the boundary separately. Let us

6



concentrate on the left side first. The intensity values i6, i7, and i8 give us the equations

i6 = IL(0)− 5

2
I ′L(0) +

25

8
I ′′L(0).

i7 = IL(0)− 3

2
I ′L(0) +

9

8
I ′′L(0),

i8 = IL(0)− 1

2
I ′L(0) +

1

8
I ′′L(0),

where the subscript “L” denotes the fact that this is the parabolic fit to the left side of the
central boundary. Inverting this matrix system of equations, we obtain

IL(0) =
15i8 − 10i7 + 3i6

8
,

I ′L(0) = 2i8 − 3i7 + i6.

I ′′L(0) = i8 − 2i7 + i6.

(2)

We can perform the same analysis on the right-hand side of the boundary by replacing i6,
i7, and i8 with i11, i10, and i9 respectively, and replacing IL(0), I ′L(0), and I ′′L(0) with IR(0),
−I ′R(0), and I ′′R(0) respectively, to obtain

IR(0) =
15i9 − 10i10 + 3i11

8
,

I ′R(0) = −2i9 + 3i10 − i11.

I ′′R(0) = i9 − 2i10 + i11.

(3)

We won’t actually need the values of I ′′L(0) or I ′′R(0), but we list them here for completeness,
and to show that we obtain the first-principles expressions for the second derivative (which
in this model is constant on each side of the boundary).

3.3. Calculating the discrepancies

We define the intensity discrepancy u to be the increase in the extrapolated I(0) as we
cross the boundary from left to right:

u ≡ IR(0)− IL(0) =
15(i9−i8)− 10(i10−i7) + 3(i11−i6)

8
. (4)

Note that, since the values in are integers, our calculations can proceed with integer arith-
metic. The calculation of u requires three integer multiplications, five additions and sub-
tractions, and the division by 8 can be effected by means of a binary shift right by three bits.
(To ensure correct rounding, we first add 4 before doing the shift right, so that we actually
need six additions and subtractions in total.)

Similarly, we define the derivative discrepancy v to be the increase in the extrapolated
I ′(0) as we cross from left to right:

v ≡ I ′R(0)− I ′L(0) = −2(i9+i8) + 3(i10+i7)− (i11+i6). (5)

7



The calculation of v requires three integer multiplications, and five additions and subtrac-
tions.

3.4. Catering for missing pixels

In the previous section, we assumed that all six pixels were available to us when calcu-
lating discrepancies. However, on the right edge of a JPEG or MPEG image there can be
partial blocks if the width of the image is not a multiple of eight.

In terms of computing discrepancies internal to a block, this phenomenon will not come
into play. As discussed in Sec. 2.4 above, we only compute internal discrepancies for those
blocks for which the right boundary is present; hence, all eight pixels of the block itself must
be present. In line with the discussion of Sec. 2.4, we only need the middle six pixels of the
block anyway.

For boundary discrepancy calculations, however, the situation is different. If there are
three or more pixels to the right of the boundary, then the discrepancy calculations are not
affected. However, if there are only one or two pixels to the right of the boundary, then we
must modify our procedures. (There must be at least one pixel to the right of the boundary
for a boundary to be considered “present”.) We will treat each case in turn.

If there are only two pixels to the right of the boundary, then we can still model the right
side of the boundary with a linear function:

I(x) ≈ I(0) + I ′(0)x. (6)

The intensity values i9 and i10 give us the equations

i9 = IR(0) +
1

2
I ′R(0),

i10 = IR(0) +
3

2
I ′R(0).

Inverting this matrix system of equations, we obtain

IR(0) =
3i9 − i10

2
,

I ′R(0) = i10 − i9.

Together with the expressions (2), we get

u(5) ≡ IR(0)− IL(0) =
−3i6 + 10i7 − 15i8 + 12i9 − 4i10

8
(7)

and

v(5) ≡ I ′R(0)− I ′L(0) = −i6 + 3i7 − 2i8 − i9 + i10, (8)

where the superscript “(5)” denotes the fact that we only have five pixels to work with.
Finally, if there is only one pixel to the right of the boundary, then all we can do is model

the intensity in the right block as a constant, namely, IR(0) ≈ i9. We then obtain

u(4) ≡ IR(0)− IL(0) =
−3i6 + 10i7 − 15i8 + 8i9

8
. (9)

8



(The correction of a single pixel to the right of a boundary on the right edge of an image is of
very low importance, so it is not worthwhile to perform any more elaborate an extrapolation
than this.) In this case, we have v(4) = 0, because there is no way to compute the intensity
derivative on the right side of the boundary.

3.5. Discounting the discrepancies

As discussed in Sec. 2.4, once we measure an intensity discrepancy u or a derivative dis-
crepancy v across the central boundary, we do not automatically seek to remove it completely.
Rather, we need to first determine how much of it should be removed.

The general criterion guiding this determination was discussed in Sec. 2.4: we adjust the
boundary discrepancies only to such an extent that their distribution becomes equal to that
of the internal discrepancies.

Now, it may seem that a statistical analysis would violate our design requirement that
the UnBlock algorithm be as fast as possible. However, this is not the case. The computed
discrepancy values will all be integers, with fixed range: −255 to +255. (This is definitely
the case for u, for which it would not make sense for a discontinuity to be greater than 255
in magnitude; even though the discrepancy formulas can lead to greater values, we should
clamp the result into this range. For v, we theoretically could jump from a gradient of −255
per pixel to +255 per pixel across a boundary, but the average gradient on each side of the
boundary, over two or more pixels, must of necessity be less, so again it would be eminently
sensible to clamp v values to this range.)

Now, if we take the absolute value of each discrepancy, this leaves us with just 256
possible values. (In the following statistical analysis, when we refer to a “value” we will
be referring to magnitudes only, namely, the result after taking the absolute value.) It is
simple to go through the image and construct a frequency table, for each of the discrepancy
types, for the interior regions and the boundaries, by incrementing totals in arrays offset by
the value of the discrepancy. To keep the following statistical arithmetic simple, and reduce
the computational load, it is sufficient to compute an interior discrepancy just once for each
block, so that (if we ignore partial blocks) the total number of interior values is the same
as the total number of boundary values. For definiteness, we use the middle six pixels of a
block to calculate the interior discrepancies.

We must now determine some algorithm by which the boundary discrepancy distributions
can be modified to match the corresponding interior discrepancy distributions. A workable
way to do this is to first compute the cumulative distributions. We then walk through the
boundary discrepancy cumulative frequency distribution, from 0 up to 255. For each value of
boundary discrepancy, we find that value of the interior discrepancy for which the cumulative
distributions most closely match. This value of the interior discrepancy is allowed to remain
when we correct for the discrepancy; i.e., the discrepancy is “discounted” by the value of
the interior discrepancy that has the most closely matching cumulative distribution value.

An example might make this clearer. Imagine that we have walked through the first
ten boundary discrepancy values (0 through 9), and we are now analyzing a boundary
discrepancy of 10. Imagine that there are, say, 27,000 boundary values that are less than or
equal to 10. We look through the interior cumulative distribution, and we find that there are,
say, 27,200 interior values less than or equal to 3. By our above ansatz, we therefore deem

9



that if we measure a boundary discrepancy magnitude to be 10, then we should reduce it to
a magnitude of 3. We don’t remove the full discrepancy of 10; we “discount” the discrepancy
by 3 units, and only remove a discrepancy of 7. Of course, since actual discrepancies are both
positive and negative, we keep the sign of the discrepancy when reducing its magnitude.

3.6. The correction functions

Following the discussion in Sec. 2.7, we wish to correct the (discounted) discrepancies
u and v by adjusting the sixteen pixel intensities i1 through i16, such that the underlying
continuous correction function, which we will denote ∆I(x), and its spatial derivative, ∆I ′(x),
vanishes at each of the adjacent boundaries:

∆I(±8) = 0, ∆I ′(±8) = 0. (10)

We assume that the corrections for u and v are independent of each other, and are linearly
superposed, so that

∆I(x) = ∆Iu(x) + ∆Iv(x).

Indeed, we shall consider the u and v corrections separately, because different considerations
come into play for each of them.

Let us start by considering the correction of an intensity discontinuity u. For definiteness
we will discuss the case in which u is positive, i.e., the (extrapolated) intensity on the right
side of the boundary is higher than that on the left (but of course the formulas will work
equally well when u is negative). According to the discussion of Sec. 2.7, we wish to increase
the intensity values of pixels in the left block, and decrease the intensity values of the pixels
in the right block, so that, at the central boundary, the discrepancy u is removed. We treat
the left and right blocks symmetrically, so that the (extrapolated) increase in intensity in
the left block at the central boundary should be u/2, and the (extrapolated) increase in
intensity in the right block at the central boundary should be −u/2.

Now, the intensity changes must satisfy the constraints (10) at the adjacent boundaries.
Within each block, this implies three constraints in total: the two constraints in (10), and
the required value of ∆Iu(0). The simplest way to satisfy three constraints is with a parabolic
function. Let us consider, first, the left block. The two constraints in (10) can clearly be
satisfied if we put the turning point of the parabola at (−8, 0), namely,

∆IuL(x) = a(x+8)2.

We determine the value of a by requiring ∆IuL(0) = u/2, namely, a = u/128, so that

∆IuL(x) =
u

128
(x+8)2. (11)

Likewise, for the right block we can satisfy the two constraints in (10) by putting the turning
point of the parabola at (8, 0), namely,

∆IuR(x) = −a(x−8)2,

10



and requiring that ∆IuR(0) = −u/2, so that again a = u/128, and

∆IuR(x) = − u

128
(x−8)2. (12)

Note that the correction of the intensity discrepancy has not only altered the values of
the extrapolated intensities at the central boundary, but it has also changed the derivative
of the intensity at the central boundary:

∆I ′uL(0) = ∆I ′uR(0) =
u

8
.

This does not violate our requirement that the correction of u not affect the computation of
v, because the change in the derivative is the same coming from both sides of the boundary:
there is an increase in the gradient introduced at the boundary, but there is no gradient
discrepancy introduced by these additions to the intensities. This additional contribution to
the derivative simply says that the gradient at the central boundary has been increased, in
order to compensate for the intensity discrepancy that has been removed. Note that, had we
decided to spread u out linearly over the domain −8 ≤ x ≤ 8, the gradient of this increase
would have only been u/16, namely, only half as much as we have computed above. The
reason that our increased gradient at the central boundary is twice as large is our require-
ment that the alterations not change the intensity derivatives at the adjacent boundaries,
which necessitated a two-parabola, rather than a linear, spreading out of the discrepancy:
the gradient is zero at the adjacent boundaries, and increases linearly in magnitude as we
approach the central boundary; and since its average value must be u/16, its value at the
central boundary is consequently twice as large, namely, u/8.

It is now straightforward to determine the required changes to the sixteen pixel intensity
values in in order to correct an intensity discrepancy u. Using (11), we obtain

∆iu1 =
u

512
, ∆iu2 =

9u

512
, ∆iu3 =

25u

512
, ∆iu4 =

49u

512
,

∆iu5 =
81u

512
, ∆iu6 =

121u

512
, ∆iu7 =

169u

512
, ∆iu8 =

225u

512
.

(13)

Now, the denominators of 512 here are convenient, because we can implement them by means
of a shift right by nine bits, rather than using an integer division each time. However, we can
do even better. Recall that our intensity values have limited quantization resolution: they
are integers from 0 to 255. Thus, any fraction need only be represented accurately enough
with a denominator of 256, and the effect will be the same for our purposes. In the case
of (13), it is accurate enough if we simply halve each of the denominators and round down,
resulting in

∆iu1 = 0, ∆iu2 =
u

64
, ∆iu3 =

3u

64
, ∆iu4 =

3u

32
,

∆iu5 =
5u

32
, ∆iu6 =

15u

64
, ∆iu7 =

21u

64
, ∆iu8 =

7u

16
.

(14)

Our judicious choice of rounding has reduced our computational load to five integer multi-
plications, and a total of 33 bit shifts to the right (which are fast). (We also include seven

11



integer additions so that the divisions are correctly rounded.) By symmetry, or using (12)
with the same considerations, we obtain

∆iu9 = −7u

16
, ∆iu10 = −21u

64
, ∆iu11 = −15u

64
, ∆iu12 = −5u

32
,

∆iu13 = −3u

32
, ∆iu14 = −3u

64
, ∆iu15 = − u

64
, ∆iu16 = 0.

(15)

Let us now consider the correction of a derivative discrepancy v. Since we do not wish
this correction to introduce an intensity discontinuity at the central boundary, the correction
function must be continuous at x = 0. However, by definition, it must have a “kink”, i.e.,
a discontinuity in its derivative, at x = 0; symmetry demands that we allocate half of the
discrepancy to each side:

∆I ′vL(0) =
v

2
, ∆I ′vR(0) = −v

2
. (16)

A moment’s thought will then show that ∆Iv(x) must be an even function of x. Now, in
contrast, ∆Iu(x) was an odd function of x, which meant that any intensity taken from one
side of the boundary was added to the other side; in other words, there was no “creation or
destruction” of intensity overall: it was merely shifted ariound. This is an mportant property
of ∆I(x), that we must impose explicitly on ∆Iv(x). Mathematically, it is formulated as

∫ +8

−8
dx ∆I(x) = 0.

Since ∆Iv(x) is an even function of x, this then requires that

∫ 0

−8
dx ∆Iv(x) =

∫ +8

0
dx ∆Iv(x) = 0. (17)

The constraints (16) and (17), together with the constraints (10) applying at the adjacent
boundaries, therefore provide four constraints in each of the left and right blocks. Now, this
is one more constraint than we had in correcting a u discrepancy, and as a result we need
to progress cautiously. The most obvious way to satisfy four constraints in each region is to
fit a cubic function to each. However, this would violate our third criterion listed in Sec. 2.7
above, because we have already decided to use a parabolic model in each region to measure
discrepancies. If we were to use a cubic function, then the continuous function ∆Iv(x) would
satisfy the constraints for continuous x, but the discrete measurement model would not deem
that it was doing so. Although the error would be relatively small, it is still large enough
that in some cases it would bring a degree of ambiguity and inconsistency into the correction
phase: discrepancy values across a given boundary would change subtly when we correct the
preceding boundary.

So is there any alternative to using a cubic function? Indeed there is. Consider the left
block. The only pixels which are used to compute the discrepancies across the left adjacent
boundary are i1, i2, and i3. If we were to impose a parabolic function for these three pixels—
say, for the domain −8 ≤ x ≤ −5, where we are extending to the mid-pixel points—then we
would be free to fit a different model to the rest of the domain in the left block, namely,

12



−5 ≤ x ≤ 0. Let us refer to the parabola fitted to the domain −8 ≤ x ≤ −5 as ∆IvL1(x),
and the function fitted to the domain −5 ≤ x ≤ 0 as ∆IvL2(x).

Now, what sort of function could we use for ∆IvL2(x)? We can determine this by counting
how many free parameters we must have in its specfication. We started with four constraints.
To join ∆IvL1(x) and ∆IvL2(x) together smoothly, at x = −5, we must ensure that their
values and their derivatives match; this provides a further two constraints. Thus, we have
six constraints in all. The parabolic function ∆IvL1(x) has three free parameters. Thus,
∆IvL2(x) must also have three free parameters; and hence it can also be a parabolic function.

Now, as before, the two constraints at x = −8 can be automatically incorporated into
∆IvL1(x) by placing the turning point of the parabola at (−8, 0):

∆IvL1(x) = a(x+8)2.

There is no special symmetry for ∆IvL2(x), and hence we simply write it as

∆IvL2(x) = bx2 + cx + d.

If we now impose the constraints (17) and (16), together with the “smooth join” constraints
∆IvL1(−5) = ∆IvL2(−5) and ∆I ′vL1(−5) = ∆I ′vL2(−5), we obtain four equations in a, b, c,
and d. The details are not very enlightening, and the generation and solution of the four
equations are most simply performed using a computer algebra system, so we simply quote
the results here:

∆IvL1(x) = − 25v

1248
(x+8)2,

∆IvL2(x) =
129v

2080
x2 +

v

2
x +

10

13
.

If we graph this hybrid function, it can be seen that the derivative discrepancy correction
is effected by “scooping out” some intensity near the left side and middle of the left block,
and “piling it up” near the right boundary, to create a “ramp” as we approach x = 0.

If we actually compute these functions at the eight pixel positions in the left block, we
obtain

∆iv1 = − 25v

4992
, ∆iv2 = − 75v

1664
, ∆iv3 = −625v

4992
, ∆iv4 = −1871v

8320
,

∆iv5 = −1839v

8320
, ∆iv6 = −155v

1664
, ∆iv7 = +

1321v

8320
, ∆iv8 = +

4449v

8320
.

(18)

The denominators here are not convenient at all; they are not powers of 2, and hence would
require a full integer division for each coefficient. However, we must again remember that
our intensity values are only 8-bit values, and so there is no point in representing a fraction
with more than eight fractional bits anyway. Thus, it is perfectly sufficient for us to round
off the coefficients in the values (18) to the nearest fraction with a denominator of 256. A
suitable set of correction values is then

∆iv1 = − v

256
, ∆iv2 = −11v

256
, ∆iv3 = −31v

256
, ∆iv4 = −58v

256
,

∆iv5 = −57v

256
, ∆iv6 = −22v

256
, ∆iv7 = +

42v

256
, ∆iv8 = +

138v

256
.

(19)

13



It should be noted that, if one performs the conversions, one will find that some of the
numerators in (19) are one or two units away from what would be expected from the values
in (18), if rounded to the nearest integer. They have been adjusted slightly to ensure that
our four criteria are satisfied exactly, to within eight bits of accuracy. The changes are
essentially negligible, but included here for completeness. In any case, all that is important
for the practical implementation of the algorithm are the eight coefficients.

Finally, the correction values for the right block are obtained directly by symmetry:

∆iv9 = +
138v

256
, ∆iv10 = +

42v

256
, ∆iv11 = −22v

256
, ∆iv12 = −57v

256
,

∆iv13 = −58v

256
, ∆iv14 = −31v

256
, ∆iv15 = −11v

256
, ∆iv16 = − v

256
.

(20)

14


