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Abstract

We show analytically that g4 — 0 in the ultrarelativistic limit for the har-
monic oscillator relativistic constituent quark model.

I. PROOF

Our notation essentially follows Berestetskii and Terent’ev [2-4]. Upon application of
the Melosh transformation [5] one finds that g4 is reduced from its non-relativistic value by
a factor

ZE/dF’@(Mg)f{l—QQiJr[mf?(ll_n)MoP}.

(This same result—without the factor of 2 in the second term—holds for the reduction in
electric dipole moment [1] and the contribution of the quark anomalous magnetic moment
[6].) We parametrise the harmonic oscillator potential by

M2
®(M7) = Aexp <— 120042> :

The ultra-relativistic limit, «/m — oo, can be realised here by taking m = 0 with « fixed.
We then have
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*This paper is taken directly from Appendix D of ref. [1].
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and
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The quantity N takes care of the normalisation of @; the common factors of 4/(27)? are

introduced for later convenience. Converting (), and ¢, to plane polar coordinates, the
angular integrations are trivially equal to 27, and hence
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where () = |@Q 1| and ¢ = |q. | are integrated from 0 to co. Now change to the variables
X =%
Y =¢%,

and define the quantities

B =12a"n(1 —n),
v = 12a%0€(1 - €),

to obtain
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The X and Y integrals for N can be done immediately, leaving

N = /dg/dn 1_7])-

substituting back in the values of 3 and ~ gives

1 1
N = 144044/0 dg/odnn.

N can now be finished off completely, with the &-integration giving 1, and the n-integration
giving 1/2, yielding

N = 720", (2)

Returning, now, to I, concentrate on the X and Y integrations first. To this end, define
the quantities



which simplifies the integral to
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Concentrating on the Y-integral,
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define a new variable

which gives [7, Eq. 5.1.1]

where Fj(z) is the exponential integral. Defining another two convenient quantities

)
C =),
€
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5¢
one can now simplify the format of the X-integral:
1 00
Iz—/MWWEX.
eC? Jo c 1(X)

It will be noted that Ix is now in the form of a Laplace transform, i.e.

f@)zzﬁ{f@ﬂ»zu/¢ﬁe_“f@)
0
Using the fact the Laplace transform of the exponential integral is given by [8, Eq. 19.1]
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c{B®) = iln(s +1),
and that
cltfv)} =——c{f}.
one then finds that
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Expanding the quantities w, ( and € back out in terms of £ and 7, one has
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giving
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Returning now to the full expression including the £ and 7 integrals, we have

I = 144@4/01d§/01d77772(1 —n) {111(1772— il + 77(11_77)}.

As & has now dropped out of our equations, it can be trivially integrated to yield a factor
of 1. Expanding out the braces, one finds that

1 1
I = 144044/(1 —n)In(1l —n)dn + 144044/ ndn.
0 0
Noting that

A= =) =)} = (1) ),

one finally obtains the desired result
I = 360" (3)
Inserting (2) and (3) into (1) gives the final result of

36a*

Z=1-=2
7204

=0.

(It should be noted that, for the equivalent electric dipole moment and anomalous magnetic
moment calculations, the result is 1/2, rather than zero.)
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